Continued Fractions

Ryan Fu, Seojin Kim

October 12, 2023

§1 Introduction

Definition 1.1. A finite continued fraction is an expression of the form

$$
a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\cdots+\frac{1}{a_{k-1+\frac{1}{a_{k}}}}}}}
$$

where $a_{0}, a_{1}, \ldots a_{k}$ are natural numbers. A continued fraction of the above form can be denoted as $\left[a_{0}, a_{1}, \ldots a_{k}\right]$ for short.

Exercise 1.2. Simplify each of the following continued fractions:

1. $[2,3,2]$
2. $[1,4,3,4]$
3. $[6,9,4,2]$
4. $[9,12,21,2]$

Exercise 1.3. Write each of the following as a continued fraction:

1. $5 / 12$
2. $5 / 3$
3. $33 / 23$
4. $37 / 31$

Exercise 1.4. Find all positive integer solutions to $x+\frac{1}{y+\frac{1}{z}}=\frac{10}{7}$.
Exercise 1.5. Prove that when $\frac{10}{7}$ is replaced with $\frac{8}{5}$, there are no solutions.
Exercise 1.6. Find positive integers (a, b, c, d) such that

$$
a+\frac{1}{b+\frac{1}{c+\frac{1}{d}}}=\frac{931}{222}
$$

§2 Infinite Continued Fractions

Continued fractions don't necessarily need to be finite.
Definition 2.1. An infinite continued fraction is an expression of the form

$$
\begin{equation*}
a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\ldots}} \tag{1}
\end{equation*}
$$

Exercise 2.2. Prove that a continued fraction is rational if and only if it is finite.
Definition 2.3. An infinite continued fraction is periodic if a portion of it repeats. More formally, the continued fraction $\left[a_{0}, a_{1}, a_{2}, \ldots\right]$ is periodic if it is of the form $\left[a_{0}, \ldots, a_{r}, a_{r+1} m \ldots a_{r+p}, a_{r}, a_{r+1}, \ldots, a_{r+p}, \ldots\right]$. In this case, we denote it as $\left[a_{0}, \ldots, \overline{a_{r}, \ldots, a_{r+p}}\right]$

Example 2.4

$$
[1, \overline{2}]=1+\frac{1}{2+\frac{1}{2+\frac{1}{2+\ldots}}} \text { is an infinite periodic continued fraction. }
$$

Exercise 2.5. Write

$$
5+\frac{1}{4+\frac{1}{4+\frac{1}{4+\cdots}}}
$$

using the continued fraction notation and find its value.
Exercise 2.6. Simplify the following:

1. $[1]$
2. $[2, \overline{4}]$
3. $[\overline{1,2}]$

Exercise 2.7. Show that if a is positive, then

$$
\sqrt{a+\sqrt{a+\sqrt{a+\sqrt{a+\cdots}}}}=1+\frac{a}{1+\frac{a}{1+\frac{a}{1+\cdots}}}
$$

Exercise 2.8. Simplify the expression

$$
5+\frac{1}{3+\frac{1}{5+\frac{1}{3+\cdots}}}
$$

Exercise 2.9. (Challenge) Prove that all periodic continued fractions are solutions to quadratics with integer coefficients.

